Tuberculosis in the era of TNF-alpha inhibition

Kevin L. Winthrop M.D., M.P.H.
Assistant Professor
Division of Infectious Diseases
Oregon Health and Science University

Tuberculosis (TB)

- One-third of world is infected
- In 90%, infection remains latent
- Infection spread limited by immune system
 - Granuloma formation around bacilli
 - Intracellular killing of bacilli
- 10% develop disease
 - Immunosuppression increases risk of progression to disease

Tumor Necrosis Factor–alpha (TNF-α)

- Proinflammatory cytokine
- Expressed primarily by activated Macrophages
 - Also T and B lymphocytes
- Soluble and transmembrane forms
- Biological effects are numerous
 - Sepsis and systemic inflammation
 - Macrophage recruitment and activation
 - Granuloma formation and maintenance

TNF- α Effects

- P55 receptor
 - Primarily binds soluble TNF- α
 - Integral to granuloma formation and maintenance
- P75 receptor
 - Primarily binds transmembrane TNF- α
 - Less important to granuloma formation

TNF- α and TB Infection

- In vitro
 - Increases macrophage phagocytosis and killing of *M. tuberculosis* bacilli
 - Induces apoptosis of ineffective macrophages
- In vivo
 - Mice deficient in TNF- α / p-55 signaling pathway fail to form granulomas
 - Increased dissemination of TB bacilli
 - -Mouse death

Overexpression of TNF- α

- Inflammation and tissue destruction
- Important in pathogenesis
 - Crohn's, rheumatoid arthritis, psoriasis, ankylosing spondylitis, others
- Inhibition of TNF- α highly successful in treatment of these conditions
 - Infliximab, adalimumab (monoclonal antibodies)
 - Etanercept (soluble p75 receptor)

TNF-α Antagonist Therapy

- Often used in combination with methotrexate and/or prednisone
- Many patients have co-morbidities
 - Chronic lung disease, diabetes
- Off-label use frequent
 - Wegener's granulomatosis, uveitis, Bechet's, dermatomyositis, polymyositis, sarcoidosis, giant cell arteritis, others

TNF-α Antagonist Therapy

- Infectious complications
 - TB reported with all 3 drugs
 - Other infections include: histoplasmosis, aspergillosis, candidiasis, listeriosis, others
- U.S. Food and Drug Administration (FDA) adverse event database
 - Collects voluntary reports from physicians

TNF-α Antagonist Therapy and TB

- First published review: Keane et al, NEJM 2001
- 70 cases of TB with infliximab
- Atypical clinical presentation
 - -40 (57%) extrapulmonary
 - -17 (24%) disseminated
- Median time to onset, 12 weeks (range,1 to 52 weeks)

Etanercept and TB

- Mohan et al, CID 2004
- 25 cases of TB with etanercept
- Atypical presentation
 - 13 (52%) extrapulmonary
 - 3 (12%) disseminated
- Median time to onset, 11.5 months (range, 1-20 months)

TNF-α Antagonist Therapy and TB

- Most recent review: Wallis et al, CID 2004 (Erratum)
- World-wide TB reports through September 2002
 - -335 infliximab
 - -39 etanercept
- U.S. TB reports over 4 years of study
 - -106 infliximab (rate 54/100,000 treatment starts)
 - -32 etanercept (rate 28/100,000 treatment starts)

Other Reported Infections

Most are more numerous with infliximab

	Infliximab	<u>Etanercept</u>
Histoplasmosis	39	3
Nontuberculous mycobacteria	31	7
Listeriosis	36	2
Coccidiomycosis	11	1
Candidiasis	38	8
Aspergillosis	29	10
Nocardiosis	10	1

More TB Risk with Infliximab?

- Infliximab drug mechanism differs
- Greater TNF- α binding
 - Transmembrane and soluble TNF- α
 - Forms stable complex
- Longer half-life
- Apoptosis of monocytes and T lymphocytes
- Downregulates interferon-gamma

Interferon-γ Story

- Saliu et al. compared monoclonal antibodies and etanercept
- In vitro whole blood culture exposed to TB culturefiltrate or mitogen
 - Exposed to anti-TNF drugs in concentrations typical of trough and peak in body
 - Also, a supratherapeutic etanercept concentration
- Measured t-cell responses, TB growth, cytokine production, apoptosis

Interferon-y Downregulation

- Adalimumab and infliximab similar
 - Suppressed TB antigen induced INF-γ production (5 days incubation)
 - Decreased T-cell activation (24 hrs incubation)
- No significant difference in TB culture growth at 24 and 96 hours
 - Bacilli grow slowly (doubling time = 15-24 hrs)
- No monocyte or T cell apoptosis seen with any drug

More TB Risk with Infliximab?

- Possible difference in underlying populations receiving the 2 drugs
 - Medical and TB risk factors
 - Use of concomitant methotrexate or corticosteroids
- Limitations of FDA database
 - Under-reporting of cases
 - Cannot rule out reporting bias

UK Biologic Registry

- 9000 patients, followed Dec 2001-Sept 2005.
- Physician documented infection
- No significant difference between anti-TNF drugs

	Anti-TNF (n=7,664)	Non-biologic (n=1,354)
RR serious Infection	*1.03 (0.7-1.6)	Ref.
RR skin/soft tissue infection	*4.3 (1.1-17.2)	Ref.
RR intracellular infection	Undefined	Ref

^{*}Adjusted for age, sex, RA severity, extraarticular manifestations, steroids, diabetes, COPD/asthma, smoking

Dixon WG et al. Arthritis and Rheum 2006

Intracellular Infections

- 19 intracellular infections (200/100,000 person-yr)
 - All in anti-TNF treated
 - TB (n=10), NTM (n=1), Listeria (n=3),
 Salmonella (n=3), Legionella (n=3)
- More TB with monoclonals
 - Infliximab Adj. IRR 4.9 (0.5-49.8)
 - Adalimumab Adj. IRR 3.5 (0.3-47.3)

Emerging Infection Network (EIN) Survey

- Asked for mycobacterial and other infections in last 6 months
- 426 (48.9%) EIN members responded
 - 1876 mycobacterial infections reported
- 49 (2.6%) of associated with biologics
 - 32 cases NTM vs. 17 TB
 - M. avium complex most common (n=16)

EIN Survey Results

Associated biologics

	<u>INF</u>	ETN	<u>ADA</u>	RTX	<u>ATC</u>	Unspecified
TB (n=17)	7	4	1	3	0	2
NTM (n=32)	11	8	2	5	0	6

- 21 (42%) patients with concurrent prednisone/MTX
- 8 (16%) patients died
- Other biologic associated infections reported
 - Invasive S. aureus (n=73) and histoplasmosis (N=56).

Need for LTBI Screening

- CDC published Morbidity and Mortality Weekly Report (2004)
 - 12 cases in California
 - Most associated with infliximab
 - Many had not been screened for TB
- CDC/FDA editorial in Arthritis and Rheumatism (2005)
 - Issued interim TB screening and treatment recommendations

Screening for Latent TB Infection (LTBI)

- Screen BEFORE patient is immunocompromised
- History for TB risk factors
 - —Foreign-birth or extended living abroad
 - —Previous contact to TB case
 - -Previous LTBI diagnosis or treatment
 - -Incarceration, homelessness, IV drug use

Screening for Latent TB Infection (LTBI)

- Perform tuberculin skin test (TST)
- Chest radiograph
 - —If TST result positive
 - —If clinical or epidemiologic suspicion
- Interferon-gamma (INF-γ) release assay (IGRA) testing

IGRAs

- QuantiFERON-TB Gold® test (Cellestis, Australia)
 - Detects cell-mediated immunity
 - Whole blood incubated with TB antigens
 - INF-γ released from sensitized lymphocytes
- T-SPOT.TB ® assay (Oxford, UK)
 - Similar to QFT
 - Measures number of reactive lymphocytes

IGRAs

- Greater specificity for TB than TST
 - No cross reaction with BCG or most NTM
- Little experience screening immunocompromised patients
 - Relative sensitivity unclear
 - Few studies in renal dialysis and Hem/Onc suggest improved sensitivity
 - Several case series in anti-TNF patients suggests similar or better
 - Rheum patients (N=126, anti-TNF or DMARD treated)
 IGRA more closely associated with LTBI risk factors*
 - 6% indeterminate

LTBI Diagnosis and Treatment

- If anti-TNF drug candidate
 - -5 mm cut-point to define TST positive
 - If TST negative, consider epidemiologic risk factors and radiologic findings
 - -Europeans using IGRAs
- Begin LTBI treatment BEFORE starting anti-TNF therapy
 - -9 months isoniazid (INH) preferred in U.S.
 - -4 months rifampin alternative

Recommendation Nuances

- Similar to HIV-infected TB screening guidelines
- No role for anergy panel testing
- Routine "two-step" testing not recommended
 - Specificity issue in countries with high BCG prevalence
- Repeat screening?
 - Did not address
 - Repeat if potential exposure

Evidence Supporting TB Screening

- 83% reduction in infliximab-associated cases
 Spain (Carmona et al. Arthritis Rheum 2005)
 - Use two-step TST
 - 9 months INH
- 85% reduction in adalimumab-associated cases
 North America/Europe (Perez et al. EULAR 2005)
 - Adalimumab dose reduction
 - Use TST and INH similar to CDC recommendations

Why We Left the Motherland

- British Thoracic Society with different view
- Chest radiograph for all
- Do not recommend routine TST
 - Immunosuppressed and too many false negatives
 - Empiric INH in black Africans > 15yo and foreign-born South Asians
- If not immunosuppressed, test with TST
 - Positive ≥ 15mm (if history of BCG)
 - Positive ≥ 5mm in all others

INH Hepatotoxicity

- Hanta et al, Clin Rheumatol 2007
 - 5/60 with 3 fold LFT rise
 - No clinical sequelae, all normalized with INH stop
- Baseline and periodic LFT evaluation recommended in these patients

Patients Receiving TNF- α Antagonists

- Physicians should maintain high index of suspicion for TB disease
 - —Febrile or respiratory illness
- If TB diagnosed
 - Begin anti-TB treatment
- Stop anti-TNF therapy immediately?
 - Immune reconstitution inflammatory syndrome (IRIS), although rare in EIN study
 - Unclear when to re-start anti-TNF therapy

Use of Immunosuppressing Drugs During Treatment of TB Disease

- Corticosteroids
 - Used in meningeal and pericardial TB
- Azathioprine and cyclosporine
 - —Used safely in organ recipients with TB
- Anti-T-cell antibodies
 - Organ recipients with TB have worsened outcome
 - Due to worsened organ function vs. interaction with TB therapy

Anti-TNF Drugs During Treatment of TB Disease

- Little data available
- Recent small study (n=16) HIV-infected TB patients
 - Concurrent therapy with etanercept was safe
 - Trend toward improved TB outcome
 - Historical control group used
 - Limited power
 - Clinical significance unclear

Needed Research

- Utility of INF γ release assays in screening anti TNF candidates for LTBI
- Clinical studies to assess effect of anti-TNF drugs on LTBI and TB treatment
 - —Improved or worsened outcome?
 - Duration of TB treatment?
- Studies to assess the infectious risk of different biologics and combination therapy
 - -Biologic, methotrexate, and corticosteroid

Next Steps

- Convene experts and public health agencies (ATS/IDSA/CDC)
 - Review and propose research
 - Further refine and issue U.S. screening and treatment guidelines

Acknowledgments

- U.S. Centers for Disease Control and Prevention
 - Zach Taylor, Michael lademarco, John Jereb, Ken Castro
- U.S. Food and Drug Administration
 - Jeffrey Siegel
- National Jewish Medical Center
 - Chuck Daley

Prednisone and Tuberculosis

- Risk of reactivation TB poorly defined
 - Based on anecdotal reports from 1950-70s
- CDC 2000 TB statement
 - ≥15mg/day for one month or more
 - Dose shown to suppress tuberculin skin test reactivity
- No observational or prospective data to support
- Retrospective studies in low incidence areas unable to demonstrate any risk of TB

Finally Some Data

- Jick et al. Arthritis Rheum 2006
- General Practice Research Database, UK
- TB cases 1990-2001 and controls[†]
- Current glucocorticoid use *OR 4.9 (2.9-8.3)
- <15mg/day *OR 2.8 (1.0-7.9)</p>
- >15mg/day *OR 7.7 (2.8-21.4)
 - Causal versus severity of underlying disease

[†]Controls matched for age, sex, residence, time clinically followed

^{*}Adjusted for smoking, BMI, lung disease, diabetes, anti-rheumatic therapy, other TB risk factors

Case Report

- 64-year old woman with rheumatoid arthritis
- Began infliximab (September 2001)
- After seven doses, fever and weight loss (April 2002)
- Chest radiograph with pericardial effusion and a right-upper lobe infiltrate
- Pericardial and pulmonary multi-drug resistant TB diagnosed

Case Report

- Physician unaware of TB risk before starting infliximab
- Patient born in Philippines
- Patient had contact to pan-sensitive TB case in 1999
- Negative tuberculin skin test (TST) in 2000
 - But on prednisone at time of TST

INH Hepatotoxicity

- Prospective study: Nolan et al, JAMA 1999
 - 11,141 consecutive patients in Seattle, WA
 - 0.10% to 0.15% developed clinically significant hepatitis
 - Median onset 9 weeks (range, 3-22 weeks)
 - No data on underlying liver disease or use of other drugs

Rheumatoid Arthritis and Prednisone

- Current usage is prevalent
 - 47% in Doran study (pre-year 2000)
 - 35% in recent survey in US (2004, in press)
 - Use increases with severity of RA
 - Decreases with start of TNF blockade
- Infection risk with prednisone well-described, but not well-quantified
 - Tuberculosis, other opportunistic infections, routine bacterial pathogens

Adalimumab and TB

- Commercially available for less time than other drugs
 - FDA approval August 2004
- Clinical trials North America and Europe
 - 34 cases TB in 14,544 patient years of exposure
 - (234 cases/100,000 patient-years)

Key References

- American Thoracic Society. Targeted tuberculin testing and treatment of latent tuberculosis infection. Am J Respir Crit Care Med 2000;161:S221-247.
- CDC: Guidelines for using the QuantiFERON®-TB test for diagnosing latent *Mycobacterium tuberculosis* infection. MMWR 2003; 52(RR02):15-18.
- CDC: Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection---United States, 2003. MMWR 2003;52(31):735-739.
- Mohan AK, Cote TR, Siegel JN, Braun MM. Infectious complications of biologic treatments of Rheumatoid Arthritis. Curr Opinion Rheumatol 2003; 15:179-84.
- Mohan AK, Cote TR, Block JA, Manadan AM, Siegel JN, Braun MM.
 Tuberculosis following the use of Etanercept: a tumor necrosis factor inhibitor. Clin Infect Dis 2004:39:295-299.

Key References

- Blumberg HM, Burman WJ, Chaisson RE, et al. Treatment of tuberculosis. Am J Respir Crit Care Med 2003;167:603-662.
- Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor-α neutralizing agent. NEJM 2001;345:1098-1104.
- Nolan C, Goldberg SV, Buskin SE. Hepatotoxicity associated with isoniazid preventive therapy: a 7 year survey from a public health tuberculosis clinic. JAMA 1999;281:1014-1018.
- Wallis RS, Broder MS, Wong JY, Hanson ME, Breenhouwer DO.
 Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 2004;38:1261-1265.
- Wallis RS. Granulomatous infectious diseases associated with tumor necrosis factor antagonists [Erratum] (In Press, Clin Infect Dis)

Key References

 Wallis RS, Kyambadde P, Johnson JL, et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS 2004;18:257-264.